Rings in which certain right ideals are direct summands of annihilators
نویسندگان
چکیده
منابع مشابه
Modules whose direct summands are FI-extending
A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$. It is not known whether a direct summand of an FI-extending module is also FI-extending. In this study, it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?
متن کاملPrime Ideals in Certain Quantum Determinantal Rings
The ideal I 1 generated by the 2 2 quantum minors in the coordinate algebra of quantum matrices, O q (M m;n (k)), is investigated. Analogues of the First and Second Fundamental Theorems of Invariant Theory are proved. In particular, it is shown that I 1 is a completely prime ideal, that is, O q (M m;n (k))=I 1 is an integral domain, and that O q (M m;n (k))=I 1 is the ring of coinvariants of a ...
متن کاملAnnihilators of Ideals of Exterior Algebras
The Orlik-Solomon algebra A of a matroid is isomorphic to the quotient of an exterior algebra E by a defining ideal I . We find an explicit presentation of the annihilator ideal of I or, equivalently, the E-module dual to A. As an application of that we provide a necessary, combinatorial condition for the algebra A to be quadratic. We show that this is stronger than matroid being line-closed th...
متن کاملRings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملFrames in right ideals of $C^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 2002
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700009009