Rings in which certain right ideals are direct summands of annihilators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modules whose direct summands are FI-extending

‎A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$‎. ‎It is not known whether a direct summand of an FI-extending module is also FI-extending‎. ‎In this study‎, ‎it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?

متن کامل

Prime Ideals in Certain Quantum Determinantal Rings

The ideal I 1 generated by the 2 2 quantum minors in the coordinate algebra of quantum matrices, O q (M m;n (k)), is investigated. Analogues of the First and Second Fundamental Theorems of Invariant Theory are proved. In particular, it is shown that I 1 is a completely prime ideal, that is, O q (M m;n (k))=I 1 is an integral domain, and that O q (M m;n (k))=I 1 is the ring of coinvariants of a ...

متن کامل

Annihilators of Ideals of Exterior Algebras

The Orlik-Solomon algebra A of a matroid is isomorphic to the quotient of an exterior algebra E by a defining ideal I . We find an explicit presentation of the annihilator ideal of I or, equivalently, the E-module dual to A. As an application of that we provide a necessary, combinatorial condition for the algebra A to be quadratic. We show that this is stronger than matroid being line-closed th...

متن کامل

Rings in which elements are the sum of an‎ ‎idempotent and a regular element

Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 2002

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700009009